
Polynomial Taylor Sifting 
 

9 February 2020 Page 1 
 

Polynomial Taylor Shifting 
By Henrik Vestermark (hve@hvks.com) 

 

Abstract  
 
We present two classic methods for Polynomial Taylor shifting. Shaw-Traub and the 
Horner method. We present it using the Matrix form most often found in the literature. 
However, both methods’ matrix forms can be boiled down to a set of simple row 
operations. 
 
 
 
 

Contents 
Abstract ............................................................................................................................... 1 

Polynomial Taylor Shifting................................................................................................. 2 

Introduction ..................................................................................................................... 2  

Shaw-Traub Taylor shifting ............................................................................................ 3  

Algorithm for Polynomial Taylor shift with real coefficients .................................... 3 

Optimized Algorithm for Polynomial Taylor shift with real coefficients .................. 4 

Taylor shifting using the Horner method ........................................................................ 5 

Algorithm for Horner Polynomial Taylor shift with real coefficients ........................ 5 

Optimized Algorithm for Horner Polynomial Taylor shift with real coefficients ...... 6 

Reference ............................................................................................................................ 7  

 
  



Polynomial Taylor Sifting 
 

9 February 2020 Page 2 
 

 
 

Polynomial Taylor Shifting 
 

Introduction  
 
Sometimes it can be practical not to solve a given Polynomial directly but instead solve a 
Polynomial where all the roots are shifted a certain distance from the original polynomial. 
A classic example is the Rutishauser QD method for finding Polynomial roots. One of the 
drawbacks of the Rutishauser QD method is that it requires all coefficients to be 𝑎 ≠
0 𝑓𝑜𝑟 𝑖 =0,…,n.  For the Polynomial below: 
 
 𝑃(𝑧) = 𝑎 𝑧 + 𝑎 𝑧 +, … , 𝑎 𝑧 + 𝑎  1 

 
E.g., The Polynomial x5-1 cannot be solved directly with that method. However, if we 
Taylor shift the roots to the left with 2 we get a new Polynomial 
x5+10x4+40x3+80x2+80x+31 
Now all the coefficients 𝑎 ≠ 0 𝑓𝑜𝑟 𝑖 =0,…,n. Moreover, we can now find the roots of 
the new Polynomial to be:  
 
 X1= -0.9999999999999998 
 X2= (-2.8090169943749466+i0.5877852522924708) 
 X3= (-2.8090169943749466-i0.5877852522924708) 
 X4= (-1.6909830056250537-i0.951056516295154) 
 X5= (-1.6909830056250534+i0.9510565162951539) 

 
Adding the shifting value back (+2), you get: 
 
 X1= +0.9999999999999998 
 X2= (-0.8090169943749466+i0.5877852522924708) 
 X3= (-0.8090169943749466-i0.5877852522924708) 
 X4= (0.30901699437494745+i0.9510565162951536) 
 X5= (0.30901699437494745-i0.9510565162951535) 

 
Which is the root of the Polynomial x5-1. 
 
J Gathen [1] is a good reference for fast Taylor shifts algorithms for a Polynomial in the 
form: 
 
 𝑃(𝑧) = 𝑎 𝑧 + 𝑎 𝑧 +, … , 𝑎 𝑧 + 𝑎  2 

 



Polynomial Taylor Sifting 
 

9 February 2020 Page 3 
 

Shaw-Traub Taylor shifting  
 
Here is the Shaw-Traub 1974 algorithm where z0 is the shift value 
 
 Given 𝑃(𝑧) = 𝑎 𝑧 + 𝑎 𝑧 , … , 𝑎 𝑥 + 𝑎  

We try to find Polynomial 𝑄(𝑧) = 𝑞 𝑧 + 𝑞 𝑧 , … , 𝑞 𝑥 + 𝑞  
That represents the z0-shifted Polynomial. 
Arrange P(z) in a matrix form, where z0 is the shift value: 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎 𝑧 𝑎 𝑧 …

𝑎 𝑧 𝑎 𝑧 ⋯
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎 𝑧 … 𝑎 𝑧

𝑎 𝑧 … 𝑎 𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 

 
Compute: ti,,j+1=M[i,j+1]=M[i-1,j]+M[i-1,j+1] for j=0,1,…,n-1; 
i=j+1,…n 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎 𝑧 𝑎 𝑧 …

𝑎 𝑧 𝑡 , 𝑎 𝑧 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎 𝑧 𝑡 , 𝑡 , ⋯ 𝑎 𝑧

𝑎 𝑧 𝑡 , 𝑡 , … 𝑡 , 𝑎 𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 

Then 𝑞 =
[ , ]

= ,  for i = 0,1, … , n − 1; 𝑎𝑛𝑑 𝑞 = 𝑎    

 

3 

 

Algorithm for Polynomial Taylor shift with real coefficients 
/* 
Given the n - degree polynomial : p(x) = anx^n + an - 1x^n - 1 + ... + a1x + a0 
We must obtain new polynomial coefficients qi, by Taylor shift q(x) = p(x + x0). 
We'll use the matrix t of dimensions m x m, m=n+1 to store data. 
Compute ti, 0 = an - i - 1x0^(n - i - 1) for i = 0..n - 1 
Store ti, i + 1 = anx0^n for i = 0..n - 1 
Compute ti, j + 1 = ti - 1, j + ti - 1, j + 1 for j = 0..n - 1, i = j + 1..n 
Compute the coefficients : qi = tn, i + 1 / x0^i for i = 0..n - 1 
The highest degree coefficient is the same: qn = an 
*/  
void taylorShift(const int n, double a[], double shift) 

{ 
 int i, j, m = n + 1; 
 double **t; 
 if (shift == 0) return; // No shift, no change 
 t = new double *[m]; 
 for (i = 0; i < m; ++i) 
  t[i] = new double[m]; 
 for (i = 0; i < n; ++i) 
  { 
  t[i][0] = a[ i + 1 ] * pow(shift, n - i - 1); 



Polynomial Taylor Sifting 
 

9 February 2020 Page 4 
 

  t[i][i + 1] = a[0] * pow(shift, n); 
  } 
 for (j = 0; j < n; ++j) 
  for (i = j+1; i <= n; ++i) 
   t[i][j + 1]=t[i-1][j]+t[i-1][j+1]; 
 for (i = 0; i < n; ++i) 
  a[n-i] = t[n][i + 1 ] / pow(shift, i); 
 for (i = 0; i < m; ++i) 
  delete t[i]; 
 delete [] t; 
 } 
 
We can easily extend the above algorithm to Polynomial with Complex coefficients and 
Complex shifting values. 
 
Quite simple and easy to do it however, we can optimize the algorithm by noticing that 
we generate each t’s from a row based on summarizing two elements from the previous 
row. See below where t1,1 is formed by adding 𝑡 , = 𝑎 𝑧 + 𝑎 𝑧  from the previous 
row. 
 
 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎 𝑧 𝑎 𝑧 …

𝑎 𝑧 𝑡 , 𝑎 𝑧 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎 𝑧 𝑡 , 𝑡 , ⋯ 𝑎 𝑧

𝑎 𝑧 𝑡 , 𝑡 , … 𝑡 , 𝑎 𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 

 

4 

  
 
Or tn,2 is formed by adding 𝑡 , = 𝑡 , + 𝑡 ,  from the previous row. 
Instead of arranging it as a matrix, we can simply just create a single row R that we 
initialize as follows. 
 
 𝑅 = [𝑎 𝑧 𝑎 𝑧 𝑎 𝑧 … 𝑎 𝑧 𝑎 𝑧 ] 5 

 
Now we use the same computational algorithm as before but start backward for each row 
to be able to merge it into a single-row operation. 
 
Compute: ti=R[i]=R[i-1]+R[i] for j=1,…,n; i=j,…1 and for each new j initialize 
R[0]=aj+1z0

n-j-1 
 

Optimized Algorithm for Polynomial Taylor shift with real coefficients 
// Optimized algorithm for Taylor shifting using only a single row instead of a  
// matrix  
void taylorShift(const int n, double a[], double shift) 
 { 
 int i, j, m = n + 1; 
  
 if (shift == 0) return; // No shift, no change 



Polynomial Taylor Sifting 
 

9 February 2020 Page 5 
 

 double *b = new double[m]; 
 b[0] = a[1] * pow(shift, n - 1); 
 for (i = 1; i <= n; ++i) 
  b[i] = a[0] * pow(shift, n); 
 for (j = 1; j <= n; ++j) 
  { 
  for ( i = j; i >=1 ; --i) 
   b[i] = b[i] + b[i - 1]; 
  if (j == n) b[0] = 0; else 
  b[0] = a[j + 1] * pow(shift, n - j - 1); 
  } 
 
 for (i = 0; i < n; ++i) 
  a[n - i] = b[i + 1] / pow(shift, i); 
 delete[] b; 
 } 
 
 

Taylor shifting using the Horner method 
 
There is also another classic method that just uses a simple Horner schema to compute 
the Taylor shift. See Henrici [2] for the Polynomial: 
 
 𝑃(𝑧) = 𝑎 𝑧 + 𝑎 𝑧 +, … , 𝑎 𝑧 + 𝑎  6

 
 
Again, when describing the method you usually set it up in a matrix form like the Shaw-
Traub algorithm however, initialize it differently and z0 is the shift value. 
 
 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎 𝑎 𝑎 … 𝑎 𝑎
𝑎 𝑡 , 𝑡 , ⋯ 𝑡 , 𝑡 ,

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎 𝑡 , 𝑡 , …

𝑎 𝑡 , …

𝑎 … ⎦
⎥
⎥
⎥
⎥
⎤

 

 

7 

Compute: ti,,j+1=M[j,i]=z0M[j,i-1]+M[j-1,i] for j=1,…,n; i=1,…n-j+1 
At the end of this computation, the new shifting polynomial coefficient is diagonal from 
the lower left corner to the upper right corner (blue color). 
 

Algorithm for Horner Polynomial Taylor shift with real coefficients 
// Taylor shift using Horner matrix 
void taylorShiftHornermatrix(const int n, double a[], double shift) 
 { 
 int i, j; 
 int m = n + 1; 
 double **t; 
 if (shift == 0) return; // No shift, no change 



Polynomial Taylor Sifting 
 

9 February 2020 Page 6 
 

 t = new double *[m]; 
 for (i = 0; i < m; ++i) 
  t[i] = new double[m]; 
 for (i = 0; i <= n; ++i) 
  { 
  t[0][i] = a[i]; 
  if(i!=0) 
   t[i][0] = a[0]; 
  } 
 for (i = 1; i <= n; ++i) 
  a[i] = t[n - i + 1][i]; 
 for (j = 1; j <= n; ++j) 
  for (i = 1; i <= n-j+1; ++i) 
   t[j][i] = shift*t[j][i-1]+t[j-1][i]; 
 for (i = 1; i <= n; ++i) 
  a[i] = t[n-i+1][i]; 
 for (i = 0; i < m; ++i) 
  delete t[i]; 
 delete[] t; 
 } 
 
Somehow similar to the Shaw-Traub Algorithm, however you avoid the call to the pow() 
function at the expense of an extra multiplication. As we saw with the Traub-Shaw 
algorithm, the Polynomial can easily be extended to Complex coefficients and or 
Complex shift values. 
 
As for the Shaw-Traub method, you can also optimize the algorithm and reduce the 
matrix to a set of single-row operations. As can be seen, the next t is computed using the 
previous row element and the current row element and therefore we can again boil down 
the algorithm to a very efficient version as outlined below. 
 

Optimized Algorithm for Horner Polynomial Taylor shift with real 
coefficients 
// Optimized Polynomial Taylor shift using the Horner method 
void taylorShiftHorner(const int n, double a[], double shift) 
 { 
 int i, j; 
 if (shift == 0) return; // No shift, no change 
 for (j = 1; j <= n; ++j) 
  for (i = 1; i <= n - j + 1; ++i) 
   a[i] += shift*a[i - 1]; 
 } 
 
This is the fastest of the two algorithms presented. The above algorithm has the 
advantage that you do not need to temporarily allocate memory to hold the matrix or a 
single row but can work directly on the coefficients on the original Polynomial. 



Polynomial Taylor Sifting 
 

9 February 2020 Page 7 
 

Reference 
 

1. J Gathen, Jürgen Fast Algorithm for Taylor sifts and certain Difference Equations 
2. P. Henrici, Elements of Numerical Analysis, 1964 Willey 


